A Novel-weighted Rough Set-based Meta Learning for Ozone Day Prediction

نویسندگان

  • Hala S. Own
  • Ajith Abraham
چکیده

Nowadays, classifier combination methodsreceives great attention from machine learning researchers. It is a powerful tool to improve the accuracy of classifiers. This approach has become increasingly interesting, especially for real-world problems, which are often characterized by their imbalanced nature. The unbalanced distribution of data leads to poor performance of most of the conventional machine learning techniques. In this paper, we propose a novel weighted rough set as a Meta classifier framework for 14 classifiers to find the smallest and optimal ensemble, which maximize the overall ensemble accuracy. We propose a new entropy-based method to compute the weight of each classifier. Each classifier assigns a weight based on its contribution to classification accuracy. Thanks to the powerful reduct technique in rough set, this guarantees high diversity of the produced reduct ensembles. The higher diversity between the core classifiers has a positive impact on the performance of minority class as well as on the overall system performance. Experimental results with ozone dataset demonstrate the advantages of weighted rough set Meta classifier framework over the well-known Meta classifiers like Bagging, boosting and random forest as well as any individual classifiers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts

High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...

متن کامل

Identifying Effective Features and Classifiers for Short Term Rainfall Forecast Using Rough Sets Maximum Frequency Weighted Feature Reduction Technique

Precise rainfall forecasting is a common challenge across the globe in meteorological predictions. As rainfall forecasting involves rather complex dynamic parameters, an increasing demand for novel approaches to improve the forecasting accuracy has heightened. Recently, Rough Set Theory (RST) has attracted a wide variety of scientific applications and is extensively adopted in decision support ...

متن کامل

Identification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network

Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...

متن کامل

A comparative study on rough set based class imbalance learning

This paper performs systematic comparative studies on rough set based class imbalance learning. We compare the strategies of weighting, re-sampling and filtering used in the rough set based methods for class imbalance learning. Weighting is better than re-sampling, and re-sampling is better than filtering. The weighted rough set based method achieves the best performance in class imbalance lear...

متن کامل

A weighted rough set based method developed for class imbalance learning

In this paper, we introduce weights into Pawlak rough set model to balance the class distribution of a data set and develop a weighted rough set based method to deal with the class imbalance problem. In order to develop the weighted rough set based method, we design first a weighted attribute reduction algorithm by introducing and extending Guiasu weighted entropy to measure the significance of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014